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The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat
worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resis-
tant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111
(ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P.
aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile ge-
netic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia.

Pseudomonas aeruginosa is an opportunistic pathogen associ-
ated with a variety of hospital-associated infections, often in

critically ill patients. The treatment of infections caused by P.
aeruginosa is challenging due to the expression of metallo-�-lac-
tamases (e.g., VIM and IMP) and serine enzymes (e.g., Klebsiella
pneumoniae carbapenemase [KPC]) that confer resistance to most
commercially available �-lactams. The acquisition of carbapen-
emase-encoding genes, combined with the presence of mecha-
nisms of resistance to multiple other antimicrobials, has led to the
emergence of multidrug-resistant (MDR) and extensively drug-
resistant (XDR) P. aeruginosa (1). Clinicians are often left with
very limited options to treat infections caused by MDR and XDR
P. aeruginosa strains, which are associated with increased morbid-
ity, mortality, and health care costs (2, 3).

Studies on the molecular epidemiology and population struc-
ture of Gram-negative bacteria have identified MDR strains that
successfully disseminate across diverse geographic locations and
patient populations and are therefore known as high-risk clones.
Genetic fingerprinting with multilocus sequence typing (MLST)
has identified sequence type 111 (ST111), ST175, and ST235 as
high-risk clones that are prevalent among carbapenemase-pro-
ducing P. aeruginosa strains from Europe and Asia (4–7). Carbap-
enem-resistant P. aeruginosa, mainly mediated by KPC- and VIM-
type enzymes, is endemic in Colombia (8, 9). Although initial
reports suggested that high-risk clones circulate in Colombia (10,
11), data on the molecular epidemiology of carbapenemase-pro-
ducing P. aeruginosa isolates are limited. In this study, we charac-
terize XDR P. aeruginosa isolates from seven cities in Colombia,
focusing on the identification of high-risk clones and of genetic
elements associated with the dissemination of carbapenemase
genes.

Single-patient isolates of XDR P. aeruginosa (defined as resis-
tant to antipseudomonal carbapenems, cephalosporins, penicil-
lins, fluoroquinolones, and aminoglycosides [1]) were selected
from the Colombian Bacterial Resistance Surveillance Network
strain collection (2008 and 2010) at the Centro Internacional de
Entrenamiento e Investigaciones Médicas (CIDEIM). A total of

161 isolates were recovered from 16 tertiary care hospitals in seven
Colombian cities. The majority of the isolates (77%) were from
intensive care units, and the most frequent sample sources were
urine (n � 40), blood (n � 36), respiratory secretions (n � 34),
and skin or soft tissue (n � 17). The study was approved by the
ethics committee of CIDEIM.

An in-house multiplex quantitative PCR (qPCR) designed
to detect blaKPC, blaVIM, blaIMP, blaNDM, blaTEM, blaSHV, and
blaCTX-M was performed using a CFX96 real-time PCR detection
system (Bio-Rad Laboratories, Hercules, CA). The probes (dual-
labeled black hole quencher [BHQ] probes) and primers (Table 1)
were designed using Beacon Designer 8.0 (Premier Biosoft Inter-
national). Total DNA (100 ng) was used as the template for the
reaction. The thermal cycling conditions for the multiplex qPCR
were 50°C for 2 min, 95°C for 2 min, followed by 40 cycles at 95°C
(15 s) and 60°C (1 min). The samples with a threshold cycle (CT)
value of �35 were considered positive. Additionally, conventional
PCR was used to screen for the presence of blaPER and blaGES (12).
We performed phenotypic tests for carbapenemase production
using the Carba NP test and a combined-disk method (CDM)
using imipenem and cloxacillin in isolates that tested negative for
the presence of carbapenemase genes (13, 14). The sequencing of
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PCR products was performed in order to confirm the identities of
the detected genes. Pulsed-field gel electrophoresis (PFGE) using
XbaI was performed in the 161 isolates to assess their genetic re-
latedness, as previously described by Gautom (15). Two or more
strains were considered genetically related if the Dice coefficient
was �75%. MLST was performed in at least one isolate from each
PFGE type, as described previously (15). STs were assigned using
the available Web-based scheme (Pseudomonas aeruginosa MLST
database [http://pubmlst.org/paeruginosa]). The location of car-
bapenemase genes within the bacterial chromosome was investi-
gated with S1 nuclease/I-CeuI probe hybridization using previ-
ously described protocols (16, 17), and the genetic environment
surrounding blaVIM or blaKPC was further analyzed by PCR and
sequencing (11, 18).

PCR amplification and sequencing confirmed the presence of
blaVIM-2 and blaKPC-2 in 128 out of 161 isolates that fit the defini-
tion of XDR P. aeruginosa (1). Of note, isolate 3386 was found to
harbor both blaVIM-2 and blaKPC-2, as previously described in de-
tail (10). All isolates that tested negative for the presence of car-
bapenemase genes by PCR were also negative for carbapenemase
production, according to phenotypic tests (Carba NP and CDM).
We did not characterize these isolates further, but we suspect that
their phenotype can be explained by the hyperexpression of the
MexAB-OprM efflux pump, modification of the OprD2 porin,
and cephalosporinase hyperproduction, as described elsewhere
(14, 19).

PFGE revealed 18 different types, seven of which were repre-
sented by single isolates. Seven PFGE types contained isolates with
blaVIM-2, and six contained isolates with blaKPC-2. As mentioned
above, one isolate harbored both blaVIM-2 and blaKPC-2, but other
isolates from the same PFGE type (PTG2) harbored blaVIM-2 only.
Among 12 isolates in PFGE type PTG1, only one contained
blaVIM-2, whereas carbapenemase-encoding genes were not found
in the remaining isolates. We were not able to detect carbapen-
emase genes in the isolates belonging to four PFGE types (Table 2).

We selected 32 isolates (at least one from each PFGE type) for
further typing with MLST; 13 of these isolates harbored blaVIM-2

only, 10 isolates harbored blaKPC-2 only, and one isolate harbored
both blaVIM-2 and blaKPC-2. Eight isolates were negative for all the
carbapenemases tested. MLST indicated that 86% of the P. aerugi-
nosa strains harboring blaVIM-2 belonged to ST111 (n � 11), while
all P. aeruginosa strains carrying blaKPC-2 belonged to ST235. In-
terestingly, a novel single-locus variant of ST111 (designated
ST1492) was identified in one isolate. Carbapenem-resistant P.
aeruginosa isolates that did not carry any of the target genes be-

longed to ST111, ST235, ST481, and ST227 (Table 2). All these
sequence types have �3 allele differences and are considered un-
related.

Using an S1/I-CeuI hybridization protocol, we were able to
determine that blaVIM-2 and blaKPC-2 were located in the chromo-
some in the majority of the isolates (70%). In the remaining iso-
lates, these genes were located in plasmids of variable length (80 to
190 kb). In the 12 isolates belonging to P. aeruginosa ST111,
blaVIM-2 was found in a class 1 integron with aacA29a in the up-
stream region and aacA29b and qacE�1sul-1 in the downstream
region; this genetic structure was previously designated In59 (10,
20). The transposon Tn4401 was found in 8 isolates carrying
blaKPC-2; in the two remaining isolates, blaKPC-2 did not appear to
be associated with this genetic structure (Table 2).

The emergence of MDR and XDR bacteria causes alarm and is
deemed a global public health crisis. Colombia is a particular hot-
spot for antibiotic resistance, where the acquisition of genes cod-
ing for KPC and VIM enzymes among Enterobacteriaceae and P.
aeruginosa is of great concern (8–11, 18, 21–23). Previous reports
(24, 25) described the predominance of certain genetic lineages of
P. aeruginosa in various clinical settings and geographic locations;
P. aeruginosa ST111 and ST235, mostly harboring blaVIM and
other metallo-�-lactamases, have been identified as being among
these high-risk clones (4, 26–30). Similar to findings elsewhere,
our survey of P. aeruginosa from Colombian hospitals found that
ST111 is a common host of blaVIM-2. In contrast, we found that P.
aeruginosa ST235 is most commonly associated with the dissemi-
nation of blaKPC-2 and is present in hospitals from 6 out of the 7
cities included in our study (see Fig. S1 in the supplemental ma-
terial). Although we had previously identified other P. aeruginosa
STs (ST308, ST1006, and ST1060) associated with the dissemina-
tion of blaKPC-2, this more comprehensive survey revealed that
ST235 is the predominant carbapenemase-producing P. aerugi-
nosa strain type in Colombia. P. aeruginosa ST235 harboring other
carbapenemase-encoding genes, such as blaVIM, blaIMP, and
blaGES, has been reported in other countries (8, 30). Of note, the
set of XDR P. aeruginosa strains analyzed in this survey displayed
consistent susceptibility to polymyxin B (except for isolate 3386
that harbors both blaVIM-2 and blaKPC-2), indicating that polymyx-
ins remain one of the few options for the treatment of infections
caused by XDR P. aeruginosa strains in Colombia.

In summary, VIM-2 and KPC-2 carbapenemases are the main
contributors to �-lactam resistance among XDR P. aeruginosa
strains found in Colombian hospitals. Almost all P. aeruginosa
strains harboring blaVIM-2 belong to ST111, while a single se-

TABLE 1 Primers and probes designed for the detection of bla genes among XDR P. aeruginosa from Colombia

Target
gene

5=–3= sequence fora:

Forward primer Reverse primer Probe

blaKPC GGACACACCCATCCGTTA GCGGGCGTTATCACTGTATTG FAM-TCCGCCACCGTCATGCCTGTTG-BHQ1b

blaVIM GCTTCGGTCCAGTAGAACTC AGACGTGCGTGACAACTC CR610-AATCGCACAACCACCATAGAGCACACT-BHQ2
blaIMP GCGGCTATAAAATAAAAGGCAGTA GATGCATACGTGGGGATAGA CY5.5-CACATTTCCATAGCGACAGCACGGGC-3BHQ3
blaNDM CAACGGTTTGGCGATCTG DGCCATCCCTGACGATCAA GOLD540-CGCACCGAATGTCTGGCAGCACA-BHQ1
blaCTX-M ATGTGCAGYACCAGTAARGTKATGGC ATCACKCGGRTCGCCXGGRAT CR610-CCCGACAGCTGGGAGACGAAACGT-BHQ2
blaTEM TGGCATGACAGTAAGAGAATTATG CAAGGCGAGTTACATGATCC CG540-AAGCGGTTAGCTCCTTCGGTCCTCC-BHQ1
blaSHV CAGGATCTGGTGGACTACTC CGCTGTTATCGCTCATGG Q670-CGCAGAGTTCGCCGACCGTCA-BHQ2
a The final primer and probe concentrations in the multiplex reaction were 0.2 �M each. Additional volumes of magnesium and deoxynucleoside triphosphates (dNTPs) were used
in the multiplex reaction.
b FAM, 6-carboxyfluorescein.
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quence type, ST235, is associated with P. aeruginosa strains har-
boring blaKPC-2. These XDR high-risk clones mainly rely on class 1
integrons and the well-known transposable element Tn4401 as the
principal structures for gene mobilization. The coexistence of
these lineages of XDR P. aeruginosa in this South American coun-
try suggests complex transmission dynamics that need to be ex-
plored further. Our findings indicate that the spread of XDR P.
aeruginosa high-risk clones is a real threat in Colombian hospitals;
this knowledge should serve as the basis for nationwide strategies
to improve infection prevention and control efforts.
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